
www.manaraa.com

Automatic Security Assessment of Critical Cyber-Infrastructures ∗

Zahid Anwar, Ravinder Shankesi, Roy. H. Campbell
{anwar,rshanke2,rhc}@uiuc.edu

University of Illinois at Urbana-Champaign

Abstract

This research investigates the automation of security as-
sessment of the static and dynamic properties of cyberin-
frastructures, with emphasis on the electrical power grid.
We describe a network model representing the static ele-
ments of a cyberinfrastructure including devices, services,
network connectivity, vulnerabilities, and access controls.
The dynamic elements include workflow models of the op-
erating procedures, processes and the state of a working
power grid. We introduce a toolkit that with a little manual
assistance can automatically generate these models from
specifications, continuously update attributes from online
event aggregators, and perform security assessment. The
assessment reveals whether observed anomalies about the
system could indicate possible security problems and per-
mit dynamic ranking of alternative recovery procedures to
minimize the total risk. We motivate the use of the tool-chain
by showing an example scenario where the recovery proce-
dure recommended to minimize security risk depends on the
current state of system as well as the network topology.

1 Introduction

Computerized control systems, also referred to as Su-
pervisory Control and Data Acquisition (SCADA) systems,
have become vital in the modern world. SCADA is de-
ployed to control water supply, telecommunications as well
as electricity generation and distribution. In this paper we
focus on SCADA systems for the electrical power grid.
These systems typically use off-the-shelf computing and
networking components, for connecting to enterprise net-
works or the Internet, making them vulnerable to well-
known cyber attacks. Furthermore, knowledgeable and in-
side attackers can use the properties of the power grid and
its operating procedures to cause cascading failures, power
blackouts or damage difficult to replace vital resources such
as high-power transformers. The security of SCADA sys-
tems made headlines [11] recently when researchers at the

∗This work was funded by the UIUC TCIP Project NSF CNS 05-24695.

Department of Energy’s Idaho lab launched an experimen-
tal cyber attack on an electrical power plant causing a gen-
erator to self-destruct. While the details of this particular
attack are not explained in depth, what is clear is that re-
searchers were able to remotely hack into the SCADA net-
work and change its configuration to cause significant dam-
age to the generator. A comprehensive report compiled by
the Industrial Security Incident Database (ISID) [1], shows
an alarming increase in the numbers of security attacks on
cyber infrastructures in recent years, with externally gen-
erated incidents accounting for 70% of all events between
2001 and 2003. The Slammer Worm infiltration of an Ohio
nuclear plant [7] and the Australian sewage spill incident
[20] in 2000 are two recent examples. In the latter case
an attacker connected through a wireless network used to
control sensors for a sewage treatment plant in Queensland,
taking control of the main system to drain raw sewage into
many of the parks and lakes.

Throughout this paper we model SCADA and Enterprise
networks in predicate-logic (henceforth called a network
model) which consists of a set of devices, services, oper-
ating systems, network connections, known vulnerabilities
as well as their attributes. The network model is used to
generate attack graphs for various SCADA devices to deter-
mine vulnerability to external attackers. While evaluating
these attack graphs, we compute the security risk for each
device depending on both the severity of the isolated vul-
nerabilities of various nodes, on the path to that device, as
well as the topology of the paths. Our device security risk is
formalized as a lattice whose partial order function depends
on the type of vulnerability and the calculated severity of
the vulnerability (i.e., an execution control vulnerability is
rated higher than a denial of service vulnerability and the
severity of a vulnerability may be valued higher or lower
depending on its exploitability). The device security risk
calculated in the network model is used as an input for our
second model explained below.

The second model, called the workflow model, describes
the various operating procedures, as workflows encoded in
rewriting logic. Operational procedures are usually recov-
ery or maintenance activities that the operators follow in the

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 366 DSN 2008: Anwar et al.

www.manaraa.com

system, for instance, to recover from a failed component
or deal with some contingency. These recovery procedures
are made up of a ordered set of tasks that enable or dis-
able SCADA network devices (for instance, a task to allow
selection of a backup transformer from a list of idle trans-
formers in a substation). Tasks can be fulfilled in various
ways, allowing operators a choice of strategies to perform a
particular function. The security risk of a particular recov-
ery procedure is calculated by aggregating the risks derived
from all the vulnerabilities of each device used in the recov-
ery procedure as obtained from the network model. Finally,
the security model presents its evaluation of the possible
recovery procedure options to an operator along with their
security risks.

We have developed a tool-chain that semi-automates the
generation of the network and workflow models as well
keeps the attributes up-to-date using on-line SCADA event
aggregators. We demonstrate its feasibility to find compli-
cated attacks on our SCADA test-bed that mimics a real
SCADA substation. We describe how our approach is scal-
able, although further automation is clearly possible.

The remainder of this paper is organized as follows: Sec-
tion 2 provides related work on existing SCADA security
models. Section 3 gives an overview of SCADA for Power
Systems and rewriting logic. Section 4 outlines the design
of our security model and Section 5 shows our implementa-
tion via a tool chain based on Prolog, Yet Another Workflow
Language(YAWL) [23] and Maude [5]. Section 6 shows
and evaluates a realistic workflow advisories scenario. We
conclude the paper in Section 7.

2 Related Work

Our research benefits from related work on attack trees,
and quantization of security for large-scale safety critical
systems. One work on SCADA attack trees [4] describes
the application of attack trees to the common MODBUS
SCADA protocol with the goal of identifying security vul-
nerabilities inherent in the specification and in typical de-
ployments. Another interesting use of SCADA attack trees
[22] evaluates security improvements based on countermea-
sure types and password policy enforcement on tree leaves.
An optimization problem is formulated to determine pivotal
leaves in the tree for security improvement.

Jajodia and Noel have used automated attack graph gen-
eration and processing techniques using vulnerability scan-
ning tools like Nessus [13] for aiding sensor placement for
monitoring attack paths to critical cyber assets [12]. Re-
searchers have also proposed various methodologies such
as compromise graphs [9] and Markov Chains [14] for ob-
taining a quantitative measurement of the risk reduction
achieved when a control system is modified with the intent
to improve cyber security defense.

The CORAS [3] project supports methodologies for risk
analysis of security-critical systems by modeling threats to
a system as unwanted features of the system in question.
Users model a system and its associated threats using UML
diagrams and XML schemas allowing exchange of risk as-
sessment data in a formalizied and standardized language.
We improve upon their idea of using UML by employ-
ing the standard descriptive language based on Common
Information Models (CIM) [8] to automate the generation
of our security models. CIM, an object-oriented cyber-
infrastructure modeling language developed by the Electric
Power Research Institute (EPRI) is better suited for model-
ing electrical utility enterprises.

While security assessment of large distributed systems
and the use of attack graphs models to find network vulner-
abilities is a fairly mature area, we did not find much work
in the automated generation of these models especially for
the cyber-infrastructures domain. Moreover there is little
work, if any, in using the security vulnerabilities calculated
for network elements as inputs to finding risks in operating
procedures and providing advisories.

3 Background

This paper does not assume that the reader has a power
engineering background and explains the key power terms
used throughout the paper in this section. It also includes
the threat model we consider for the power system in ques-
tion. Horn-clause logic and rewriting logic have been used
for the formal analysis and while we assume the reader is
reasonably familiar with the former we give a brief expla-
nation of the latter here as well.

3.1 A Power System

In a conventional electric power system, energy from
fossil fuels or falling water is harnessed to generate steam
to drive power turbines that produce electricity, which is
then transmitted and distributed to the end user. There are
a variety of SCADA controls used throughout the process
including controls for turbine, burner, and switching. Fo-
cusing on just the switching control; a typical power sys-
tem will have a large number of switches that affect the
way power is routed and distributed within various compo-
nents. These switches are often controlled remotely through
SCADA (but can also be turned on or off manually). Fig-
ure 1 shows how a power distribution system can be viewed
as a network of electric lines connected via switching de-
vices and fed via circuit-breakers. The supply of power
to consumer devices located on the lines is controlled by
the circuit-breakers which supply power if and only if (iff)
closed, and switching devices that stop power propagation
iff open. Mostly lines have a meshable structure exploited

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 367 DSN 2008: Anwar et al.

www.manaraa.com

radially and the positions of the devices are set so that the
paths taken by the power of each circuit-breaker form a tree
called a feeder. The root of a feeder is a circuit-breaker,
and its leaves are whatever switching devices downstream
happen to be open at the time.

Figure 1. Power Distribution System

Power lines are often subject to faults (short circuits)
that are mainly due to bad weather conditions and lightning.
Upon occurrence of a fault, the circuit-breaker feeding the
faulty line opens in order to protect the rest of its feeder
from damaging overloads. For instance, if a fault occurs
on the line between DS1 and DS2, CB1 will open leaving
all consumers located on that feeder without power. Sim-
ply re-closing the circuit-breaker will not help but instead,
SCADA devices (called actuators) controlling the switches
need to be used to locate faulty lines and then reconfig-
ure the network to isolate them and restore the supply to
the non-faulty lines. Remote-controlled actuators sense and
change the position of switches and report sensing the pres-
ence of faults. Changing the status of switching devices in
a substation allows some interesting attack scenarios from
an intruder’s point of view. A denial of service attack on
the actuator or its controlling SCADA device such as a Pro-
grammable Logic Controller (PLC) or relay would lead to
a failure to report the proper state in time (and might re-
quire manual intervention). Even more seriously, a buffer-
overflow in a networked device (allowing execution privi-
leges) can allow an attacker to black-out a feeder or over-
load a transformer. The latter is a very serious attack as
transformers are expensive and hard to replace.

3.2 Rewriting Logic

We specify the operating procedures as workflows in
rewriting logic. In general, a concurrent system can be spec-
ified in rewriting logic [10] as the theory R = (Σ, E,R)
where (Σ, E) is the order-sorted equational theory such
that:

• The signature Σ specifies the sorts1, a sub-sort rela-
tion, constants and function symbols. The terms TΣ

and TΣ(X) denote,the terms the set of ground Σ-terms
and the set of Σ-terms over variables in X .

1A sort can be informally thought of as the type of a term.

• The equations in E are of the form

(∀X) u = v if C

where u, v are of the same sort and the (possibly
null) condition C is a conjunction of unquantified Σ-
equations involving variables (only) in X . We say the
Σ-algebra A satisfies the equation (∀X) u = v if C iff
for each assignment a : X → A, a(u) = a(v)

Intuitively, the theory (Σ, E) defines the states of the sys-
tem and has the initial model TΣ|E . The dynamics are de-
scribed by the rewrite rules R that specify concurrent tran-
sitions that can occur in the system and that can be applied
modulo the equations in E.

Rewrite rules are of the form 2

(∀X) u→ v if
∧
i ui = vi

and describe a transition from the term t to term t′. To apply
the rewrite rule to the term t, we find a subterm of t which
is an instance of u under some substitution σ. We substitute
u in t by v, only if all the conditions hold i.e., ∀i : σ(ui) =
σ(vi). Note that multiple rewrite rules may be applicable to
a given term.

Given a rewrite-theory (Σ, E,R) we can define the tran-
sition relation→ over the states (given by the terms in the
algebra TΣ|E) by using the one-step rewrite rule in R. We
can label the transition system given by (TΣ|E ,→) by us-
ing predicates defined using equations P 3 that associate a
term in (Σ, E) to a proposition. Therefore, given a rewrite
theory, (and appropriate labeling) we can define the Kripke-
structure that describes the transition system. The extension
from a rewriting logic to the Kripke structures on which the
LTL model checking works is described in greater detail
in [6]. Therefore, given a system described using term-
rewriting logic, we can verify if it satisfies a given LTL
property by using LTL model checking.

Rewrite theories are executable (under reasonable as-
sumptions over E,R). In this work, we use Maude [6]
to implement our workflow model. Maude supports LTL
model checking by using an on-the-fly model checker.

4 Security Model

Our formal model is composed of two parts. A network
model captures the static parts of a SCADA system com-
prising the network topology, devices, services, connectiv-
ity and vulnerabilities (known software exploits). A work-
flow model captures the dynamic parts such as maintenance,
recovery activities involved and their ordering and relation-
ships.

2Note that, in general, rewrite rules can be slightly more complicated,
but we describe a simpler notation adequate for this paper.

3We require that (Σ, E ∪ P) be a protecting extension of (Σ, E).

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 368 DSN 2008: Anwar et al.

www.manaraa.com

4.1 Network Model, N

The network model N represents the SCADA network
as two types of graphs: a dependency graph G and logi-
cal attack graphs G′. The dependency graph is given as
G = (D ,E), where D is the set of all devices and E ⊆
D×D is the set of edges between two physically connected
devices. A set of functions gives the mapping between de-
vices and their attributes such as services, privilege levels
and vulnerabilities (for further details on how we formalize
network dependencies see [2]).
G is modeled as primitive facts in first order predicate

logic. The security risk of a device is dependent upon an at-
tacker’s ability to exploit a vulnerability V on that device or
on a device from which it is reachable. Attack graphs are a
well known technique [16, 15, 19] that represents a chain of
exploits as a path, where each exploit in the chain lays the
groundwork for subsequent exploits. The pioneering work
[19] in this area used model checkers to identify explicit at-
tack sequences. However, this approach suffers from scal-
ability issues because the number of such sequences grows
exponentially with the product of the number of vulnera-
bilities and devices. Later work [15] proposes a new logic
based approach where each node in the graph is a logical
statement and edges are causality relations between network
configurations and attacker privileges. This results in the at-
tack graph size being polynomial in the size of the network.
We reuse their technique for generating our attack graphs.

We use two algorithms ConstructAttackGraph and Eval-
uateAttackRisk that are executed sequentially for each de-
vice whose security risk is being evaluated. The first al-
gorithm constructs a graph depicting all possible ways an
attacker could effect a device’s safety (e.g. compromise of
availability, integrity). The EvaluateAttackRisk algorithm
then uses this output graph as input and calculates the over-
all security risk for the device.

ConstructAttackGraph essentially records a successful
Prolog derivation (an implementation of the backward
chaining algorithm in horn clause logic) as an attack graph
G′. Similar to [15] the logical attack graph G′ is a tuple
(Nr, Np, Nd, E′, τ, γ) where Nr, Np and Nd are three sets
of disjoint nodes in the graph, E′ ⊂ (Nr × (Np ∪ Nd)) ∪
(Nd × Nr)), τ is a mapping from a node to its label, and
γ ∈ Nd is the attacker goal needed to perform the exploit
rl on device D 4. Nr, Np and Nd are the sets of rule nodes,
primitive fact nodes and derived fact nodes respectively.
Primitive fact nodes Np were described earlier in the con-
struction of G. Nr represent predicate rules that describe
conditions on Np to form derived nodes Nd. The root node
of the attack graph is the goal we are trying to satisfy e.g. ‘is
a device vulnerable to DoS’ while the primitive facts, such
as knowledge about exploits, form the leaves.

4for e.g., codeExecute,DoS to exploit integrity,availability resp.

To find the accumulative security risk DM associated
with the root device node we use the following heuristics:
• H1: Security Risk decreases if the ‘length of the paths’ lead-

ing to the victim increases following the analogy that the dif-
ficulty accumulated in reaching a target is proportional to the
number of locks to be opened.

• H2: Security Risk increases if the ‘number of paths’ leading
to the target is large. The attacker can use the different paths
simultaneously to break different locks on each path.

We can translate these heuristics into a graph traversal
algorithm (see algorithm 1) that evaluates the security risk.
This algorithm is essentially a variant of the recursive depth-
first search algorithm over a directed acyclic graph. In-
termediate nodes evaluate their security risk by recursively
calling EvaluateAttackRisk on their children and returning
a product of their own risk and that of their children. In-
dividual exploit likelihoods are available from vulnerability
databases such as [18, 21]). We represent the exploitability
as a real-number between 0 and 1 where a higher number
indicates that a device is more vulnerable. An individual
node’s exploitability depends on the set of known individ-
ual vulnerabilities for that node as well as the number of
paths that reach that node. Firstly, a device’s individual
exploitability with n possible individual vulnerabilities is
calculated as 1 − Πn(1 − pn) were pn corresponds to the
exploitability values of individual vulnerabilities. Secondly,
for a vulnerable device with individual expoitability pd and
i possible paths reaching it each with exploitability pi, its
cumulative exploitability is calculated as 1−Πi(1−pd×pi).
This ensures that longer paths will decrease attack risk.

/*initialize Risk=1 for all nodes*/
double procedure EvaluateAttackRisk(V)

if Visited(V) then
return Risk(V)

end if
markAsVisited(V)
/*A rule node’s individual exploitability: calculated from all vulnerabilities */
if isRuleNode(V) then

for EACH I ∈ AdjacentPrimitiveNodesSet(V) do
Risk(V)← Risk(V)× (1− Exploitability(I))

end for
Risk(V)← (1− Risk(V))

end if
/*If a Leaf node then just return your self risk*/
if isLeafNode(V) then

return Risk(V)
end if
/*If an intermediate node then recursively evaluate risks of children*/
childRsk = 1
for EACH I ∈ ChildSet(V) do

childRsk ← (1−EvaluateAttackRisk(I)×Risk(V))× childRsk
end for
Risk(V)← (1− childRsk)
return Risk(V)

Algorithm 1: Evaluates the risk associated with an input
attack graph

Security Risk: The algorithms ConstructAttackGraph,
EvaluateAttackRisk together give, for each vulnerable de-
vice D, the tuple (rl, DM), where rl ∈ RL and (RL,≤)

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 369 DSN 2008: Anwar et al.

www.manaraa.com

is the security risk lattice which characterizes the kind of
vulnerability that device D has, and DM ∈ R s.t(0 ≤
DM ≤ 1) is the severity of the vulnerability (the cumula-
tive exploitability). We use DM to assign a severity label to
the original risk as follows Sev : R → SL where (SL, <)
is the set of labels with a total order5.

Given the risk lattice RL and the severity label SL, we
define the new extended risk-lattice RE as follows RE ⊂
{(RL × SL)}. The new security lattice is defined by the
partial order operator ≤E such that (given R,R′ ∈ RL and
S, S′ ∈ SL and ∀R ∈ RL : min(RL) ≤ R):
(R,S) = (R,S′) if (R = min(RL))
(R,S) ≤E (R′, S) if (R ≤ R′)
(R,S) ≤E (R,S′) if (S < S′)(and)(R 6= min(RL))
(R,S) ≤E (R′, S′) if (R ≤ R′) and (S < S′)
The new security-risk for each vulnerability is now given
by (r × Sev(DM)) ∈ RE . For instance, the final risk-
lattice for a system with {NoRisk ,Availability , Integrity}
as the vulnerabilities and {Low ,High} as the severity can
be depicted as follows.

High High Integrity

High Availability Low Integrity

Low Availability

NoRisk

Integrity

Availability

NoRiskLow

RL RESL

4.2 Workflow Model W

We formalize the notion of recovery and operating pro-
cedures in the form of workflows. There are many differ-
ent workflow description languages and our model of work-
flows is a subset of YAWL’s basic control flow patterns. One
distinction is that we add the notion of “actions” to be per-
formed by a task. Here we have a list of actions that can be
performed, and each of which has a security risk. The next
task that can be fired as well as the actions that are chosen at
any given task can be context-sensitive. The context consists
of the list of (task,action) pairs performed in the workflow
so far 6. At any given task, the workflow execution makes
a non-deterministic choice between the list of actions avail-
able at that task. Although this can be modelled in terms
of basic workflow primitives, our method of allowing non-
deterministic choice at a task allows us to use a “generic”
workflow description for various different power-grid en-
vironments. The individual “environment-specific” choices
that can occur at any given task can be modeled as actions
possible at that task.

Formally, we define the workflow as the tuple, W =
(T,C, F,Aid,RE ,≤, A,R, St, Jt), where each element in
the tuple is defined in Table 1

5For e.g., SL = {High,Low} such that (Low < High)
6We do not show the context in the model to simplify the description.

t
Element Definition
T set of Tasks
C set of Conditions.
F ⊆ (T × C) ∪ (C × T) transition between Tasks and Conditions.
Aid set of all actions possible.
RE set of security risks (as defined in Section

4.1) and≤ is the partial-order over elements
in RE , such that (RE ,≤) is a lattice.

A : T → P(Aid) is the set of actions associated with any
given task.

R : Aid → RE maps a risk with each action.
St : T → {AND,XOR} is the split condition7.
Jt : T → {AND,XOR} is the join condition.

Table 1. Workflow Definition

The semantics of the workflow are defined in terms of a
transition system over workflow states. A workflow state
for a given workflow W is defined by the tuple Ws =
(Tk , Ra, H) where:

• Tk ⊆ {(T ×Tks)∪ (C)} is the set of tokens present at any
of the tasks or conditions. A token at a task t ∈ T can be in
one of two states Tks = {ENABLED ,FINISHED}.

• Ra ∈ RE refers to the accumulated risk over all the
actions performed at all the finished tasks, i.e., Ra =

∪a(R(a)), ∀a ∈ H .

• H ⊆ {(T × Aid)} stores the set of actions performed
at all the finished tasks.

The transition relation between two consecutive work-
flow states in the system depends on the workflow transition
relation F and the split, join conditions St, Jt. We define
the state transition relation δ : Ws →Ws over the workflow
states Ws corresponding to a workflowW as follows:

Join Processing

• δ({Pred(T) ∪ Tk,Ra, H}) = {(T,ENABLED) ∪ Tk,Ra, H} if
Jt(T) = AND , where Pred(t) = {c | (c, t) ∈ F} and F is the flow
relation in workflowW . Pred(T) defines the set of all predecessor condition
nodes for task T in the workflowW .

• δ({Tp ∪ Tk,Ra, H}) = {(T,ENABLED) ∪ Tk,Ra, H} if
Jt(T) = XOR, where Tp ∈ Pred(T) for task T in the workflowW .

Task Processing

• δ({(T,ENABLED) ∪ Tk,Ra, H}) = {(T,FINISHED) ∪
Tk,Ra + R(Ai), (T,Ai) ∪ H} where (Ai) ∈ A(T) and + is the
least upper bound function for the risk-lattice (RL,≤) of the workflowW .

Split Processing

• δ({(T,FINISHED) ∪ Tk , Ra, H}) = {Succ(T) ∪ Tk , Ra, H} if
St(T) = AND , where Succ(t) = {c | (t, c) ∈ F}. Succ(t) defines
the set of all successor condition nodes for task t in the workflowW .

• δ({(T,FINISHED) ∪ Tk,Ra, H}) = {Ts ∪ Tk,Ra, H} if
St(T) = XOR, where Ts ∈ Succ(T) for task T in the workflowW .

7Similar to the actions, we support conditional XOR splits, i.e., the next
task to be fired depends on the (task,action) performed at an earlier stage
in the workflow. However we do not describe it here to simplify the model
description.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 370 DSN 2008: Anwar et al.

www.manaraa.com

. We define a workflow-run as the sequence of workflow
statesw1, w2, w3, · · · , wn such thatwi+1 = δ(wi). Given a
workflowW with the transition relation δ, (Ws, δ) is a tran-
sition system. From this we can derive a Kripke-structure
(Ws, δ, L) by defining a labeling function. This allows us to
perform model-checking on the system. The labeling func-
tion can depend on any of the information present in the
workflow-state Ws. In particular, this allows us to reason
about the accumulated risk as well as the tasks and actions
fired in the system.

5 Tool Chain Implementation

Fig 2 shows a high level architectural diagram of the se-
curity assessment tool-chain detailing how the various com-
ponents sit with respect to each other. We give a detailed
description of each of the various modules in the architec-
ture.

Figure 2. Tool Chain: High-Level Architectural Diagram

5.1 CIM Parsing

The network model N of the SCADA networks is auto-
generated from annotated specifications written in the stan-
dard descriptive language based on Common Information
Models (CIM) [8] with the help of a parser tool and stored
in a Prolog database. CIM’s comprehensive packages cover
everything from equipment, topology, load data, generation
profiles to measurement and scheduling. The CIM RDF
schema is documented as a self-describing XML-based IEC
standard. We create a mapping of the classes in the RDF
model to entities in our security model. The parser identifies
the main entities such as devices, connectivity and services
and populates their attributes by looking at the properties
and associations for each object in the CIM model. Some
attributes such as privileges of users and services on the de-
vices not covered by the basic CIM data model are man-
ually annotated or looked up from a services to privileges
table whenever a services entity is encountered. We used

1 execCode (P r i n c i p a l , V ic t im , P r i v) :−
2 device (Vic t im , , , Svs l s t) ,
3 conta insVu l (Svs ls t , remoteExplo i t , VSrvc) ,
4 serv i ce (VSrvc , , , Pr iv , AllowedHosts , AllowedSvs) ,
5 hasaccount (P r i n c i p a l , Source , P r i n c i p a l P r i v) ,
6 i s I nc l uded (Source , AllowedHosts) ,
7 ex is tsServ iceType (Source , P r i n c i p a l P r i v , AllowedSvs) ,
8 path (Source , Vic t im , Path) .

Figure 3. A Prolog Rule for an Attack Graph

models of popular exploits such as buffer overflows quoted
in attack graph literature and open vulnerability databases
such as CERT for our vulnerabilities. For more information
about the CIM to Prolog parser see [2].

Generic Prolog rules search for facts derived from the
CIMs to determine whether an attack is possible. For in-
stance the prolog rule shown in Figure 3 says that a Prin-
cipal can execute code on a Victim device with a privilege
Priv if a service VSrvc running on that device contains a
remoteExploit vulnerability and it allows connections from
the Source device that the Principal has an account on. Fur-
thermore Source should have a service from the set of al-
lowed AllowedSvs types, there should be a network path
from Source to Victim and Source should be in the ACL of
Victim’s allowed hosts AllowedHosts.

5.2 Representing Recovery Workflows

We represent operating procedures of a SCADA power-
grid as “generic” control-flow workflows that are not con-
strained by the detailed architecture of a specific power-grid
implementation. For example, the workflow described in
figure 4 could be applied to activate any transformer.

Figure 4. Generic Workflow Example(YAWL Editor)

The transformer workflow involves grounding the trans-
former (if it isn’t already grounded) and energizing it af-
terwards. The first task of the workflow “Is Transformer
Grounded” has a mutually exclusive conditional split to two
other tasks. The transformer chosen for the first task (there
can be multiple transformers to choose from) is left unde-
cided. In this paper, we call the possible ways a given task
can be bound to specific entities as leading to a choice of
“actions”. This list of actions depends on the specific sub-
station (some substations might have 1 backup transformer
and some might have more) as well as their individual states
(some might already be grounded, for instance).

We describe the operating procedures as workflows us-
ing Yet Another Workflow Language (YAWL [23]). YAWL

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 371 DSN 2008: Anwar et al.

www.manaraa.com

1 r l [c o n d i t i o n a l s p l i t] : −−−Rewri te Rule for Cond i t i ona l s p l i t
2 [<TkId , FirCond , CndActs ,{ [(TkId1 ? Act Id1) =TkId2] ; CondSpltLst }> TkL is t ,
3 Ac tL i s t ,
4 (TkId1 ? Act Id1) ActCxt ,
5 Tk IdL i s t1 ,
6 TkId ∗ Tk IdL i s t2 ,
7 Tk IdL i s t3 ,
8 SecRsk]
9 =>

10 [<TkId , FirCond , CndActs ,{ [(TkId1 ? Act Id1) =TkId2] ; CondSpltLst }> TkL is t ,
11 Ac tL i s t ,
12 (TkId1 ? Act Id1) ActCxt ,
13 Tk IdL i s t1 ,
14 Tk IdL i s t2 ,
15 TkId2 ∗ Tk IdL i s t3 ,
16 SecRsk] .

Table 2. Maude rule describing the conditional split

is a workflow description language that supports common
workflow patterns and its Editor [24] allows the construc-
tion of appropriate control-flow descriptions for the work-
flows and the export of this information as an XML file.

5.3 Mapping Workflows to Term-
rewriting Logic

We use the “XML to Maude” converter tool to read the
XML based workflow description generated by YAWL and
generate a term-rewriting description of the workflow in
Maude. To help with the workflow analysis, we developed a
term-rewriting module in Maude. This generic module con-
sists of rules which describe the valid workflow transitions
for any generic workflow. For instance, Table 2 shows the
rule that allows Maude to evaluate a task with a conditional
split 8.

Lines 1-8 describe the configuration before and lines
10-16 describe the configuration after the transition
rule is fired. Line 2 contains the conditional action
([(TkId1?ActId1) = TkId2]) which determines whether
while evaluating task TkId, the next task chosen should de-
pend upon the action ActId1 chosen earlier at task TkId1.
Note that TkId1,ActId1 etc., in the rules are variables and
Maude can match the instantiation of the configuration to
the left-hand-side of the rule and transform the current con-
figuration as per the rewriting rule. Maude performs the
transition by looking at whether the action-context (line 4)
contains the tuple that says that the required condition to
perform the particular task TkId2 was satisfied. If so, it
picks the next task TKId2 and puts it in the tasks to be fired
(line 15), while simultaneously removing the current task
TkId from the evaluation queue (line 13). We emphasize
that these rules are generic and will work for any workflow
description under consideration.

The “XML to Maude” converter populates the terms to
instantiate a specific workflow that was described generi-
cally using YAWL (and given in XML to the tool). The
input includes the various actions possible at any given task

8A conditional split is similar to an XOR split except that the next task
chosen depends on the context

and the evaluated security risk for each task.

5.4 Analyzing Workflows in Term-
rewriting Logic

Given the workflow description (the generic term-
rewriting theory along with the specific workflow instantia-
tion), we can use Maude’s LTL Model Checker to verify any
LTL property on the workflow. For instance, we can verify
that any task initiated in the system should never deadlock
(starting from the given initial state). This could be speci-
fied as the following LTL property:

2(initialstate→ �(finalstate))
Given that each task might be satisfied by multiple ac-

tions, we can have multiple ways of executing a given work-
flow. Since each action (such as turning on a device), can
have a different security risk, the risk taken to complete a
given task is dependent on the choices of actions taken for
any given tasks. We cannot find the workflow path (and
choices taken at every task) with the minimum security risk
in one run of model-checking. However, we can do that by
iteratively model-checking the following LTL formula until
it gives a counter example:

2(initialstate→ (FinalRisk > CurrentMinRisk))
(where CurrentMinRisk is initialized to NoRisk and is up-
dated until model-checking finds a counter-example)

5.5 Event Aggregator

We added support to our tool-chain to update prolog at-
tribute information by interfacing to the PowerWorld [17]
client software via COM API. A PowerWorld Client pro-
vides a graphical view of power system states made avail-
able to it by a Retriever that interfaces to real devices in
a SCADA network and provides data such as bus voltages,
phase angles, flows and lines and generator status. SimAuto
runs on the same host as the client and provides a COM API
interface to third-party applications to access the client’s
data-structures.

6 Evaluation

Our implementation measures approximately 1620 LOC
for Prolog and 385 LOC for Maude not counting the par-
ticular network and workflow encodings. We tested it on
a number of substation network-level scenarios (< 100 ma-
chines) all of which had a running time on the order of a few
seconds on a regular Intel Core2Duo 2.0 GHz machine run-
ning Ubuntu Linux 7.10. We describe a scenario to illustrate
our tool chain functionality to rank recovery procedures ac-
cording to security risk when a fault occurs in a substation.
Figure 5 shows a 275 kV substation with three transformers
and two bus bars. The PowerWorld tool provides a snapshot

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 372 DSN 2008: Anwar et al.

www.manaraa.com

of the system when a fault occurs on the 77kV bus-bar caus-
ing the protection system to operate, trip two of the trans-
formers (TR2 and TR3) causing the remaining transformer
to suffer from a severe overload condition. Operators in the
control center have to reduce the load of the transformer in
ten minutes otherwise TR1 overheats and burns out causing
a blackout of the entire 77kV system in the substation.

Figure 5. A 275 kV Substation with a Fault

Figure 6 shows the SCADA network that controls the en-
ergizing of the various power elements. The left hand side
of the figure shows the enterprise network with commod-
ity desktops and servers while the right hand side shows the
PCN involved with taking sensor measurements and flip-
ping switches to control the power flow. Top and bottom
rows of actuators correspond to Bus 1 and Bus 2 control
respectively. Groups of actuators are controlled by a PLC
which is in turn controlled by a relay. Mostly serial con-
nections (RS-485) are used to link these SCADA devices
together, however some of the more upgraded devices (for
instance PLC4) do use Ethernet as well. Finally the relays
report their values to a data aggregator that communicates
these to a data historian on the EN. The firewall contains
rules to allow modbus communication between the aggre-
gator and the historian.

We ran our security assessment toolkit on a model of
this substation infrastructure. Logical attack graphs were
generated for each device that was a candidate in the vari-
ous recovery procedures. The attacker was assumed to be
an outsider with network access to the EN and no privi-
leges to any machine except for his own. Figure 7 shows
a DoS attack graph for one of these devices: DS12. DS12
is controlled by PLC1 which is in turn controlled by Relay1
that forwards it instructions for controlling the re-energizing
of the transformer. If an attacker were able to successfully
deny service to this device then the underload operation for
TR1 could be delayed causing it to overload.

The root node is the attack goal; in this example it is
doSattack(attacker,DS12), meaning “the attacker can cause

Figure 6. SCADA Network Controlling the Substation

<0>||--doSattack(attacker, DS12)
<r0a> Rule: Modbus Invalid Header
[]-connectivity(aggregator,Relay1)
[]-vulExists(modbus_srvce, ’MODBUS_INVALID_HEADER’, remoteExploit, doS, 0.9)
<1>|--execCode(attacker, aggregator, root)
<r1> Rule : Remote Heap over-flow of modbus server
[]-connectivity(historian, aggregator, modbus)
[]-vulExists(modbus_srvce, ’HEAP_OVERFLOW’, remoteExploit, Integrity, 0.7)
<2>||--execCode(attacker,historian,root)
<r2> Rule : Trust Relationship with AdminPC
[]-connectivity(adminPC,historian, rlogin)
[]-trust(adminPC,historian)
<3>|--execCode(attacker,adminPC, root)
<r3> Rule : Remote Buffer Overflow
[]-connectivity(attacker,adminPC)
[]-service(adminPC,OpenSSL)
[]-vulExists(OpenSSL, ’GLSA 20071030’, remoteExploit, Integrity,0.49)

<r0b> Rule: 08 Diagnostics function code with a sub-function of 01
[]-connectivity(aggregator,Relay1)
[]-vulExists(modbus_srvce, ’08DiagnosticSubf01’, remoteExploit, doS, 0.87)
|--execCode(attacker, aggregator, root) ==> <1>

Figure 7. A Logical Attack Graph for Device DS12

the DS12 to be unresponsive”. Every rule node is labeled
with the rule name that is used for the derivation step. Rule
nodes r0a and r0b illustrate that there are two possible DoS
vulnerabilities (depicted by square brackets) in the Mod-
bus protocol the Relay is using. Sending a Modbus TCP
message with an invalid header or a 08Diagnostic message
would cause the Relay to be unresponsive. The aggregator
that logs events, talks directly to all the relays and a root
privilege on it can be achieved if the attacker can exploit a
remote heap-overflow vulnerability in its modbus service.
Finally the attacker can cross over the firewall to get to the
aggregator by compromising the historian on the EN that
has a service relationship with it. The attacker can gain
access to the historian via its rlogin trust relationship with
the admin PC which has an OpenSSL service with a buffer
overflow vulnerability. Notice that in this scenario the at-
tacker does not need to be an insider with user or root ac-
cess to any of the machines. Not shown due to space lim-
itation are graphs for DS8, NR2 and NR3. NR3’s risk tree
is the same as that of DS12 because they are connected to
the same vulnerable relay. DS8 on the other hand has a di-
rect Ethernet access from the compromised aggregator and
its integrity can be easily breached by the attacker. A high

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 373 DSN 2008: Anwar et al.

www.manaraa.com

integrity risk unlike an availability risk is very dangerous
as we will see in the workflows later because it means that
the attacker has complete control and can thwart an opera-
tor’s attempts to open or close a switch whether he does it
manually or via SCADA commands.

Figure 8. A Logical Attack Graph to assess the security
risk of a successful DoS attack on a PLC

A more compact version of the attack graph is shown in
Figure 8 that uses circles to represent derived facts, squares
to represent derivation rules and filled circles to show prim-
itive facts. This graph shows the calculation of the security
label for DS12. The leaf nodes representing exploits are
labeled with exploitability probabilities obtained from the
CERT Vulnerability calculator [18].

Task Context Required Action Risk
Select Transformer ChooseTR2 No Risk
Select Transformer ChooseTR3 No Risk

Ground Transformer ChooseTR3 at GroundTR3 Low Availability
Select Transformer NR3:0.27

Close Manually ChooseTR3 at Close Switch No Risk
Select Transformer DS12 Manually

Close Manually ChooseTR2 at Close Switch High Integrity
Select Transformer DS8 Manually DS8:0.34

Close Via ChooseTR3 at Close Switch Low Availability
SCADA “Select Transformer” DS12 by SCADA DS12:0.27

Close Via Choose TR2 at Close Switch High Integrity
SCADA “Select Transformer” DS8 by SCADA DS8:0.34

Table 3. Device Risk Evaluated and Assigned to Actions

Figure 9. Procedure to Enable a Backup Transformer

Figure 9 shows the recovery procedure that an opera-

tor has to follow to bring up a transformer. These pro-
cedures are independent of the specific configuration of
the sub-station and the actual running of the workflow de-
pends on the possible actions at any given task (not de-
picted in the picture). For instance, the workflow task “Se-
lect Transformer” consists of two actions “ChooseTR2” and
“ChooseTR3”. Depending on the current configuration, the
task “Transformer Grounded” can either split to “Ground
Transformer” or directly to “Energize Transformer”. Both
splits and actions depend on the context, i.e., which trans-
former was chosen earlier at “Select Transformer” and
whether according to the current configuration the trans-
former chosen was grounded or not.

A subset 9 of actions possible at any given task along
with their given risks is calculated by the network-analysis
tool and is given in Table 3. The list of possible actions also
depends on the current state of the system. For instance,
considering the configuration described in Figure 5 (TR3 is
not grounded while TR2 is not), the “workflow analysis”
tool can model-check if the final state is reachable from the
initial state (i.e., there are no deadlocks etc.,). Furthermore,
we can check if there is any path that can finish the work-
flow with “No Risk”. Searching for the paths that fulfill the
workflow in Maude gives us a list of paths each with its own
risk. For instance, searching for the path with “No Risk”
fails in this scenario because there is no set of choices that
can fulfill the workflow with no risk at all. Searching for
paths with Availability and Integrity Risks for the configura-
tion in (Fig:5) gives us the paths as shown in in Table 6. Es-
sentially we see that if we choose TR2, then we have a po-
tential integrity risk 10 (because device DS8 has an integrity
risk), whereas if we choose the TR3, we have a potential
availability risk (because Grounding the Transformer, uses
switch NR3 which has an availability risk). There are also
other possible evaluations (such as using SCADA to close
the switch at the task “Close Transformer Bus Breaker”,
which we haven’t shown).

Since, the minimal risk for any workflow run is “Avail-
ability” , we recommend that the operator choose “TR3”
and (due to the dependency on the transformer chosen),
close switch “DS12” manually. The third workflow shown,
shows the evaluation after a change in the configuration
(where TR3 is grounded). Note that because of the fact
that the Transformer TR3 is already grounded, we no longer
need to run the task “Ground Transformer” and therefore
the minimal risk run is the one that chooses “TR3” trans-
former (as before) and there is a set of choices which the
operator can take which have no Risk at all.

9We do not show other actions possible at other tasks for instance
“Close Transformer Protection Breaker”

10Recall that the evaluated risk of a given workflow run is the least upper
bound of all the risks of the individual actions performed during that run

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 374 DSN 2008: Anwar et al.

www.manaraa.com

Transformer
Grounded

�� �O
�O
�O

Close Transformer
Protection Breaker

&&MMMMMMMMMMM

Select
Transformer

TR2
None

99rrrrrrrrrr
Select Bus

To Energize

77ooooooooooo
///o/o/o/o/o Close
Manually

DS8

Integrity
///o/o/o/o/o Energize

Bus
Transformer
Grounded

��

Close Transformer
Protection Breaker

&&MMMMMMMMMMM

Select
Transformer

TR3
None

99rrrrrrrrrr
Ground

Transformer
NR3

Availability
// Select Bus
To Energize

77ppppppppppp
///o/o/o/o/o Close
Manually

DS12
None

///o/o/o/o/o Energize
Bus

Transformer
Grounded

��

Close Transformer
Protection Breaker

%%KKKKKKKKKKKK

Select
Transformer

TR3
None

::ttttttttttt Energize
Backup

Transformer
None

// Select Bus
To Energize

88qqqqqqqqqqqq
///o/o/o/o/o Close
Manually

DS12
None

///o/o/o/o/o Energize
Bus

Table 4. 3 Possible ways to fulfill the workflows (Fig:9)

7 Conclusion

In this work we propose a security model that incor-
porates descriptions of the SCADA infrastructure and its
workflow activities. By extending existing techniques for
scalable attack graph generation we evaluate risks and give
advisories on which workflows are safer than others based
on a cost-lattice. We implemented a tool-chain that auto-
mates most of the process of generating our models from
CIM specifications. Moreover the tool chain updates con-
figuration information dynamically from an event aggrega-
tor allowing our security model to give accurate results.

In the future we would like to evaluate the scalability of
our approach by using bigger models and see the impact on
the model checking time. Currently actions are limited to
security properties associated with devices. A more real-
istic model would be to incorporate side effects of actions
and their impact on the state of the system. Our model could
potentially allow feedback modeling (e.g. via SMTP mon-
itoring software) of the impact of firing certain actions in a
workflow and recalculation of the new security risks. The
feedback mechanism would allow us to detect changes in
not only status of devices but of security provisions as well.
Finally we would like to expand our cost-lattice to include
more properties of interest.

References

[1] British Columbia Institute of Technology Industrial Security
Incident Database. http://www.bcit.ca /appliedresearch/ se-
curity/, 2001.

[2] Z. Anwar and R. H. Campbell. Automated Assessment of
Critical Infrastructures for Compliance to Best Practices.
IFIP WG 11.10 International Conference on Critical Infras-
tructure Protection, March 2008.

[3] B. Axel, R. Fredriksen, and A. Thunem. An Approach for
Model-based risk management. Springer LNCS, 2004.

[4] E. Byres, M. Franz, and D. Miller. The Use of Attack Trees
in Assessing Vulnerabilities in SCADA Systems. Interna-
tional Infrastructure Survivability Workshop, 2004.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott. The Maude 2.0 System. In
Rewriting Techniques and Applications, LNCS, pages 76–
87. Springer-Verlag, June 2003.

[6] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln,
N. Martı́-Oliet, and C. Talcott. All About Maude – A High-
Performance Logical Framework. Springer LNCS Vol.
4350, 2007.

[7] U. S. N. R. Commission. Potential Vulnerability of Plant
Computer Network to Worm Infection. NRC Information
Notice 2003-14, 2003.

[8] Distributed Management Task Force, Common Information
Model (CIM). DSP 0004- CIM Infrastructure Specification
2.14, October 2005.

[9] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Bei-
tel. Quantitative Cyber Risk Reduction Estimation Method-
ology for a Small SCADA Control System. 39th Annual
Hawaii International Conference on System Sciences, 2006.

[10] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theor. Comput. Sci., 96(1):73–155, 1992.

[11] J. Meserve. Sources: Staged Cyber Attack Reveals Vul-
nerability in Power Grid. CNN Article, September 2007.
http://www.cnn.com/2007/US/09/26/power.at.risk/.

[12] S. Noel and S. Jajodia. Attack Graphs for Sensor Placement,
Alert Prioritization, and Attack Response. Cyberspace Re-
search Workshop (AirForce Cyberspace Symposium), 2007.

[13] S. Noel, E. Robertson, and S. Jajodia. Correlating Intrusion
Events and Building Attack Scenarios through Attack Graph
Distances. Computer Security Applications, 2004.

[14] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting
with Quantitative Evaluation Tools for Monitoring Opera-
tional Security. IEEE Trans. Software Eng, 25(5): 633-650,
1999.

[15] X. Ou, W. F. Boyer, and M. A. McQueen. A Scalable Ap-
proach to Attack Graph Generation. 13th ACM conference
on Computer and communications security, 2006.

[16] C. Phillips and L. Swiler. A Graph-based System for
Network-Vulnerability Analysis. New Security Paradigms
Workshop, 1998.

[17] POWER WORLD The Visual Approach to Analyzing
Power Systems. http://www.powerworld.com/, July 2007.

[18] M. Schiffman, G. Eschelbeck, D. Ahmad, A. Wright, and
S. Romanosky. CVSS: A Common Vulnerability Scoring
System. http://www.first.org/cvss/cvss-guide.html, 2007.

[19] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated Generation and Analysis of Attack Graphs.
IEEE Symposium on Security and Privacy, 2002.

[20] Stephanou and Tony. Assessing and exploiting the internal
security of an organization. The SANS Institute, 2001.

[21] U. S. C. E. R. Team. Us-cert vulnerability note field descrip-
tions. http://www.kb.cert.org/vuls/html/fieldhelp, 2007.

[22] C. W. Ten, C. C. Liu, and M. Govindarasu. Vulnerabil-
ity Assessment of Cybersecurity for SCADA Systems Using
Attack Trees. Power Engineering Society General Meeting,
July 2007.

[23] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yet An-
other Workflow Language. Inf. Syst., 30(4):245–275, 2005.

[24] QUT BPM Research group and Eindhoven University’s
YAWL Editor. http://www.yawl-system.com/, 2007.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 375 DSN 2008: Anwar et al.

	Return to DSN 2008 Main Menu
	PDS Sessions

